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1   SUMMARY 

1    Summary 

The PI feels that the work under the grant achieved great progress in settling important open 
questions (for instance, the complete characterization of the "input to state stability property), 
as well as in making substantial advances towards the solution of many other problems. Be- 
sides the publication record, evidence of success is provided by the large number of researchers 
who are now pursuing applications (including in some cases numerical implamentations of al- 
gorithms) as weU as theoretical extensions of the results of work performed under this grant. 
Formal recognition of the work reported here includes several invitations to give plenary talks 
at major conferences, as well as an invited presentation at the 1994 International Congress of 
Mathematics, and the elevation of the PI to a FeUow of the Institute of Electronic and Electrical 

Engineers. 
The topics to be discussed are all interrelated; the common denominator is the focus on 

nonlinear control. They can be organized roughly into these broad categories: 

• Stabilization 

- State-Space Stabilization 

- Input/Output Stabilization; Feedback Equivalence 

- Partial-State and Set Stability 

- Classical Operator-Theoretic Stability Notions 

• Control-Lyapunov Functions 

- Constrained Control-Value Sets and Parametric Versions 

- Nonsmooth Case 

• Numerical Methods for Steering 

• Other Areas 

- Discrete-Time Control and Dynamical Systems 

- I/O Equations and Identification Questions 

mis   GHA&I 
DITC TAB 
Unannounced 
JttsUnoatio: 

r^lstributi??/^ 

The rest of this Introduction will briefly outline the above areas. More details are provided in 
later sections. Most of the discussion in this report will be informal, with references to the PI s 

publications for detailed technical points. 

Stabilization 

The main objective of control is to modify the behavior of a dynamical system, typically with 
the purpose of regulating certain variables or tracking desired signals. Often, stability of the 
closed-loop system either is an explicit requirement or else the problem can be recast in a form 
that involves stabilization (e.g., of an error signal). For linear systems, the associated problems 
can now be treated fairly satisfactorily, but in the nonlinear case the area is still far from being 
settled. In fact, both of the late 1980s reports 'Challenges to control: A collective view and 
«Future Directions in Control Theory: A Mathematical Perspective" identified the problem of 
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stabiüzation of finite-dimensional deterministic systems as basically the most important open 

problem in nonlinear control. 
One of the main goals of this work was to deal with issues of stabiüzation in its two vari- 

ants: state-space and input/state (ISS) (or more generally input/output) stability. The former 
term refers to the asymptotic stability of equilibria in the absence of (or subject to only small) 
external «disturbance" inputs. On the other hand, the latter term refers to various mathemat- 
ical definitions all of which focus on bounds on state trajectories expressed in terms of bounds 
on forcing functions. Mathematically, state-space stabilization relates to classical dynamical 
systems ideas; in many practical situations, it can be achieved by means of linearization un- 
der feedback (Brockett, Hunt, Meyer, Su, Jakubczyk, Respondek), via control-Lyapunov ideas 
(Artstein, Jurdjevic-Quinn, Tsinias), via the study of zero-dynamics (Byrnes and Isidori) or, 
for more local studies, through Center Manifold Techniques (Abed, Aeyels, Bacaotti, Boothby, 
Marino, Crouch, and many others). Input/output stability, in contrast, has classically had a 
more operator-theoretic flavor and developed independently, often using techniques based on 
small-gain arguments (Desoer, Sandberg, Vidyasagar, Zames, and others). 

Based on linear systems intuition, where all notions coincide, it is perhaps surprising that 
state-space and i/o stability are not automatically related. Even for feedback hneanzable 
systems, this relation is more subtle than might appear: if one first linearizes a system and then 
stabilizes the equivalent linearization, in terms of the original system one does not in general 
obtain a closed-loop system that is input/output stable in any reasonable sense. However 
and this has been the point of some of the Pi's research starting with a paper in the 1989 
Transactions in Automatic Control, it is always possible to make a choice of a -usually difFeren - 
feedback law that achieves such stability, in the linearizable case as well as for all other smoothly 

stabilizable systems. 
Recent work of the PI and his students have dealt with versions of these results for robust 

stability, as well as design techniques that apply to output stabilization problems and to the 
construction of observers. The unifying framework is that of stabilization (both in the state 
and i/o sense) with respect to arbitrary (typically noncompact) invariant sets. In this context, 
Lyapunov-like characterizations are very useful, and form the basis of applications of the PI s 
work in robust and adaptive control (e.g., in recent work by Praly and Teel, Kokotovic and 

Freeman, Tsinias, and others). 
One of the main achievements of the project was in deriving a new converse Lyapunov 

Theorem in for robust stability ([11], with former students Lin and Wang) and in the application 
of this to obtaining complete characterizations of the ISS property. In the to-appear paper [10] 
with Wang, we were able to show that the ISS property is in fact equivalent to the existence 
of a nontrivial nonlinear stability margin, as well as to a natural characterization m terms 
of dissipation inequalities (connecting this work to so-called "nonlinear H">» work and, also, 
solving an important and longstanding open problem, that ISS stability is equivalent to the 

existence of an ISS-Lyapunov function. 

Control-Lyapunov Functions 

A basic problem in feedback control theory -which also arises in many other areas; for instance, 
it is known as the "credit assignment problem" in artificial intelligence- is that of deciding on 
proper control actions at each instant in view of an overall, long-term, objective Mimmization 
of a cumulative (typically, integral) cost leads implicitly to such good choices and this is the root 
of the Lagrangian or variational approach. Another possibility, which underlies the dynamic 
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programming paradigm, is to attempt to minimize at each instant a quantity that measures the 
overall "goodness" of a given state. In optimal control, this quantity is known as the Bellman 
(or the cost-to-go, or value, function); in stabilization, one talks about Lyapunov (or energy 
functions; game-playing programs use position evaluations (and subgoals); in some work that 
falls under the rubric of learning control, one introduces a cntic. Roughly speaking all these 
are variants of the same basic principle of assigning a cost (or, dually, an expectation of success) 
to a given state -sometimes to a state and a proposed action- in such a way that this cost is a 
good predictor of eventual, long-term, outcome. Then, choosing the right action reduces to a 
simpler, nondynamic, pointwise-in-time, optimization problem: choose a control that leads to 

a next state with least cost. 
Following ideas introduced by Artstein and himself in the early 1980s, the PI introduced 

in 1989 a systematic methodology for the use of such contwWyapt.no« functions which are 
"enersy" functions that can be made to decrease pointwise by means of appropriate mstan a- 
neous controls. (This work is closely related to an approach standard in practice -but usually 
ah-hoc- to the control of nonlinear systems.) Since then, the "universal formulas derived 
by the PI have been widely applied by many different authors, and are now part of both the 
textbook by Bacciotti on stabilizability and Isidori's (Third Edition) nonlinear control book. 
The research on this topic by the PI under this grant has dealt with (1) the generahza ion of the 
"universal formulas" to cases of bounded controls (work joint with the PI s graduate student 
Lin) and (2) the extension of these formulas to the nondifferentiable case (see [25]). This latter 
work makes contact with several less-explored areas, such as the use of viscocity solutions and 
nondifferentiable optimization in the context of control-Lyapunov functions. 

Numerical Methods for Steering 

The effective design of controls for the steering of nonlinear systems without drift, largely 
motivated by the study of nonholonomic mechanical systems, has attracted much attention 
during the past few years. Many sophisticated control strategies have been proposed based on 
a nontrivial analysis of the structure of the Lie algebra of vector fields generated by the system, 
as in work by Brockett, Sastry and his students, Bloch and McClamroch Sussmann and his 
students, and many others. In the recent work [22] [14], the PI introduced an approach of an 
entirely different nature, the "generic nonsingular loop" method. 

The Pi's method is based on a simple-minded algorithm, in the style of classical numerical 
methods, requiring no symbolic computation to implement. Although fairly trivial to implement 
in principle, the proof of the general applicability of the method is based on not quite-so- 
trivial results asserting the genericity of nonsingular controls and establishing a duality with 
an observability problem. Obviously, as with any general procedure, it can be expected to be 
extremely inefficient, and to result in poor performance, when compared with techniques that 
use (when available) nontrivial information about the system being controlled We expect our 
method to be useful mainly in conjunction with other techniques, to provide a first step of 

global control, to be followed by finer local control. 

Discrete-Time and Dynamical Systems 

Modern control techniques typically result in complex regulation mechanisms, which must be 
implemented using digital computers. Consequently, a fundamental area of research is that of 
studying the constraints imposed by computer control. The behavior of continuous-time plants 
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under digital control can be modeled by discrete-time systems. Starting in the mid-seventies 
in joint work with Rouchaleau, the PI had been interested in problems of control for nonlinear 
discrete time systems, and his Ph.D. thesis nnder Kaiman was on this topic Durmgthe early 
1980s the focus of this work shifted largely to questions of accessibility and controUabdity; a 
summary is provided in the expository paper published in the January 1990 issue of SIAM J. 

Control by Jakubczyk and the PL 
During the last three years, in collaboration with graduate student Albertini, who com- 

pleted her dissertation in mid 1993, the PI extended and greatly improved many of the basic 
results from the work with Jakubczyk regarding characterizations of nonlinear discrete-time 
controllability. Two fairly major journal papers resulted from these efforts, as well as a number 
of conference papers. Among other things, we were able to show that accessibility can be char- 
acterized in Lie algebraic terms, in much the same way as for continuous-time systems, under 
various dynamical-system assumptions on unforced dynamics, applying for instance to systems 
arising through the time-sampling of a Hamiltonian system. We also extended to discrete-time 
systems some of the basic results about "control sets" as introduced by Kliemann and Colonms 
for continuous-time (the extensions are nontrivial, as the basic enabling results were not avail- 
able before our work), and in this way we managed to establish a correspondence, in perfect 
analogy to their work, between controllability of a given system and chaotic behavior of an 

"extended system" associated to it. 

I/O Equations and Identification 

We also continued the investigation of relations between state-space readability and equations 
involving input/output data, as well as the associated structural questions about observation 
spaces. Much of this work in the past has been carried out jointly with the Pi's former graduate 
student Wang, and this collaboration is ongoing (during the last two-yean two major joint 
journal papers have appeared, and another one has been accepted for SIAM J Control on the 
topic). It is motivated mostly by the interest in nonlinear identication algorithms (most such 
algorithms are based on establishing nonlinear dependences among i/o data, and hence _one 
must ask when this implies that a state-space model can be built). Other motivations are given 
bv the use of these results in understanding the connections between state-space theory and 
Willems' school's "behavioral" approach, as well as Fliess' differential-algebraic work (one recent 
joint conference paper with Wang provides various theorems in that regard). A particularly 
unexpected and interesting result was given in [27], which showed the existence of inputs that 
are sufficiently rich to permit the identification (in theory) of arbitrary nonlinear systems This 
result constitutes probably the ultimate generalization of «universal input theorems developed 
by many during the last 20 years (a journal paper is m preparation). 

Next we provide some more details on the above topics. 
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2    State-Space and I/O Stabilization 

A substantial part of this work dealt with the stabilization of nonlinear systems ancTthe effect 
of input perturbations, and represents a long-standing direction of research pursued by the PI. 
As discussed in the introduction, problems of stabilization underlie most questions of control 
design, and many control objectives can be recast in those terms. Therefore a great deal of 
effort has been directed towards the understanding of the general problem of asymptotically 

stabilizing systems of the general form 

i = /(x,u) C1) 

with respect to an equilibrium point, or, more generally, with respect to a set of states of 
particular interest. (States x(t) and inputs or controls u(t) evolve in finite-dimensional spaces 
E." and Rm respectively; as usual, we do not write the time-argument t in the equations 
When global stabilization to equilibria is of interest, there is no point in studying more general 
systems in manifolds, since the existence of a globally asymptotically stable equilibrium forces 
the manifold to be diffeomorphic to Euclidean space. For questions of stabilization with respect 
to invariant sets, such as periodic orbits, systems on manifolds are of potential interest. To keep 
the exposition-elementarv, however, we restrict to states in ft». Furthermore we omit from 
this informal discussion all technicalities regarding regularity properties of /; at least existence 
and uniqueness of trajectories for each bounded measurable control is assumed.) 

In order to talk about stabilization, which deals with closed-loop behavior, it is first neces- 
sary to understand what is meant by «stability" of an open-loop system such as (1). Techni- 
calities aside, there are two conceptually very different manners of defining this notion. 

Notions of Stability 

The most obvious approach to defining stability of control systems relies on the standard Lya- 
punov definition from dynamical systems theory, and is obtained when one disregards the 
control. Assume that 0 is an equilibrium state, that is, /(0,0) = 0. Then one simply requires 
the global asymptotic stability of the origin for the system which is obtained by setting u = 0. 
(More generally as discussed below, given a particular invariant set A of interest, not necessar- 
ily A = {0}, one may want uniform asymptotic stability of this set, again in the standard sense 
of dynamical systems. Another variant is to consider the corresponding local definitions; for 
simplicity, the Mowing discussion will be concerned only with the global case.) This notion of 

stability is often called state-space or zero-input stability. 
In practice, control systems are affected by noise, expressed for instance as disturbances, 

actuator perturbations, and errors on observations. In this context, it is desirable for a system 
to display so-called "input/state" stability properties. This leads to the conceptual alternative 
of defining stability for (1) in an operator-theoretic sense. What is desired is not (only) that the 
system be zero-input stable as described above, but that, in addition, a bounded or decaying 
input u(-) should produce a similarly-behaved state trajectory x(-). 

For suitably "small" inputs, this is often a consequence, and hence not different conceptually 
from, state-stability; much of the huge classical literature on total stability -Lefschetz called this 
"quasi-stability"- deals with such issues. But often one is interested in quantifying the effect 
of relatively "large" inputs. That is, one wishes to impose regularity (continuity, boundedness, 

etc) properties on the operator 
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(initial state.control)    ~    ensuing complete state trajectory. 

This input/output (if only partial observations are of interest) or input/state stability is central 
to the study of robustness with respect to actuator and sensor noise, as well as being the basis 

of approaches to controller parameterization. 
Given the above intuitive description, there are many possible precise mathematical defini- 

tions of input/output stability. One possibility is to simply add the requirement BIBS: bounded 
inputs should produce bounded state trajectories (or more generally state trajectories that stay 
within a bounded distance of a desired invariant set A). Even here, there are variants: The 
state bounds may be required to depend only on input and initial state bounds -but not on 
the actual values of these- and this dependence can expected to be linear; such a definition, 
amounting to boundedness of an operator, gives rise to "finite-gain" stability ("finite incremen- 
tal gain" if the operator is to be also Lipschitz); see the discussion below on operator stabdity 
for saturated-control systems. Variants of the BIBS property are based on Lp norms instead of 
sup norms. Another possibility is to impose the condition CICS: convergent (to zero) inputs 
should produce convergent (to the desired equilibrium point or set .4) state trajectories. 

The possibilities for i/o stability are many; the important issue is to provide a definition 
which (1) is potentially useful in practical applications and general enough, and (2) leads itsell 
to nontrivial positive results. In the late 1980s, the PI introduced in a IEEE TAC paper a 
particular precise definition of input/state stability, or as it has since become known Ibb 
stability. The definition is reviewed in an appendix to this section, but it is not^needed for the 
discussion to Mow ; essentially it encompasses in one simple estimate both of BIBb and CILb 
stability as well as an ultimate boundedness property. Since its introduction, it and its obvious 
variants to deal with outputs (many of which were also described in the original reference and in 
Lin's Ph D. thesis under the PI in 1992) have been the focus of several papers by many authors; 
just as examples one may cite the applications to observer design and new small-gam theorems 
in by Tsinias, Jiang, Praly, Teel, Freeman, Kokotovic, and others. An expository introduction 

to the topic can be found in [16]. 

Feedback Equivalence to ISS 

We next illustrate explicitly one of many ways in which the ISS definition is useful and natural. 
Since much recent research in nonlinear control has been directed towards the development 
of techniques for state-space stabilization, the relation between state space and i/o stability 
is of great interest. However -contrary to the situation that holds for linear systems- state- 
space stability does not in general imply i/o stability. This is evidenced by the trivial example 
i = -x + ux2 with m=n=l; the system is zero-input stable but u(t) = 1 makes every trajectory 
with x(0) > 1 escape to infinity in finite time. Given that the two broad notions of stability do 
not in general coincide, it makes sense to ask the design question: If one can make a system 
state-space stable by using feedback, can one also make it i/o stable? Mathematically the 
stabilization problem is that of finding a feedback transformation of the type u = k{x) + ß{x)v 

so that the system with new control v € Hm 

x = F(x,v) = f(x,k{x) + ß(x)v) (2) 

is stable in the desired sense. The new "closed-loop" system (2) is said to be feedback equivalent 
to the original one; the square matrix ß(x) is required to be invertible for all x so that no 
instantaneous controllability is lost (as usual in nonlinear feedback equivalence).   Note that 
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the more restricted problem of state-space stabilization is that of finding just k (as.ß is now 
irrelevant) so that with respect to the origin (or a given invariant set of interest) the system 
with v = 0, i = F(x,0) = /(*,*(*)). be globally asymptotically stable; for i/o stability one 

wants that (2) be i/o stable. 
It is perhaps surprising, given the gap between the two properties, that if a system is 

stabilizable in the state-space sense then it is also stabilizable in the i/o sense In other words 
from a differential equations viewpoint, the properties are very different, but from a control 
viewpoint they are equivalent modulo the standard group of feedback transformations To be 
more precise, they become equivalent properties when one uses the PI s notion of SSstabüity^ 
If there is a smooth k so that for x = f (x, *(*)) the origin is globally asymptoUcaly stable then 
there are also a (generally different) smooth k and an invertible ß so that (2) ts ISS. Moreover, 

for systems affine in controls, that is, those of the special form 

x = f(x,u) = fo(x) + G{x)u, (3) 

one may take ß as the identity, resulting in a feedback law which is robust to input perturbations. 
(Systems affine in controls, possibly with control bounds, cover most interesting aerospace finite- 
dimensional control applications.) For stability with respect to sets, and for parametric versions 
with applications in robust control, this result has now been generalized, in Lin s thesis and 

further in [7], as mentioned below. 
Perhaps more than the result itself, we view this equivalence as one more indication of the 

naturality and usefulness of the technical concept of ISS; other definitions are not conducive to 
similar results. Several very recent equivalent characterizations (see below) m terms; of nonlinear 
stability margins and Lyapunov functions reinforce this view. Further, since the ISS property 
is well-behaved under cascade interconnections, it is especially suited as a systematic tool for 

the design of controllers. 

Set Stability 

Yuandan Lin's doctoral thesis, supported under this grant, and related papers, dealt with 
stabilization with respect to (not necessarily compact) sets. In this we were motivated by 

potential applications to a wide variety of areas. 
As an illustration, consider problems of output feedback. One common definition of 

«detectability'' (e.g. as done in the work of Vidyasagar) involves the existence of an ob- 
server for which the error satisfies Lyapunov estimates which depend only on the difference 
||«(t) - ,(*)||, where x(t) is the state of the plant and z(t) is the state of the observer For 
the joint plant/observer system, detectability becomes stabilization with respect to the set 

"hi olhlr Ipplications, one is interested in stabilization of an output variable as opposed 
to the complete state; this happens for instance in tracking or regulation problems, where the 
«output" is the error in a variable to be regulated, and the system model may have been enlarged 
to include an exosystem generating disturbances or reference trajectories. Qualitatively, things 
are very different from the full state case. Even local results, typically not an obstruction in 
the latter case, become false. For example, consider the Mowing two-dimensional system: 

x = x,y = -y + ux, 

with the variable y taken as the output.  Observe that when u = 0 the y variable converges 
exponentially to zero, uniformly on the initial state (x(0), y(0)). However, for nonzero «, no 
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matter how small, the output diverges if x(0) # 0. This is in marked contrast to the case of state- 
space stability, where at least for small controls and small initial states, bounded states result if 
the system was asymptotically stable for u ^ 0, and shows the fundamental difference with the 
compact attractor case. (Similar examples are typically given to illustrate the nonrobustness of 
some adaptive control algorithms; mathematically, one is dealing with almost the same issue. 
Thus it becomes of interest to try to make output variables ISS stable under perhaps additional 
feedback. This corresponds to ISS stability with respect to.a set, in this example, the set where 

y = o. 
Another motivation arises in robust control, where one studies in effect stability of a control 

system with respect to the set A := {(0, A), A 6 A}, where A is the vector of unknown parameters 
and "0" stands for the zero state. As yet another motivation, systems in which derivatives of 
controls appear can be reduced, adding integrators, to systems in which such derivatives do not 
appear, but at the cost of extra state variables which are not to be controlled. 

The paper [20], and related papers with Lin, concentrated on some basic questions related 
to set stability. We were able to extend the validity of many of the results previously known 
only for equilibria, such as the theorem on feedback equivalence to ISS systems. For instance, 
from this theory it is immediate how to modify by feedback the system x = x,y - ~V+ ™ 
mentioned above, so that the output satisfies an ISS-like property with respect to it (see [20] 
(Of course, this can be solved directly as weU, for this simple example, but the results are in full 
generality.) Several applications to robust control and to general problems of output regulation 

were given in the work with Lin. 
At the core of the work with Lin was a converse Lyapunov theorem that does not assume 

compactness of the attracting set. Far more general is our (the PI, Lin, and Wang) paper [11]. 
There motivated by problems of robust nonlinear stabilization, we gave a Converse Lyapunov 
Function Theorem which is in a form particularly useful for the study of such feedback contro 
analysis and design problems. We provided a single (and natural) unified result that: (a 
applies to stability with respect to not necessarily compact invariant sets; (2) deals with global 
asymptotic stability; (3) results in smooth (infinitely differentiable) Lyapunov functions; and 
most importantly, (4) appües to stability in the presence of bounded disturbances acting on the 

system. 
Questions of stability for systems with disturbances are naturally modeled as problems of 

stability for differential inclusions. In that context, classical books such as Aubm and Cellma s 
deal with Lyapunov functions, but mostly in the role of providing sufficient conditions (one 
exception is the work in by Molchanov for the linear case). Our converse Lyapunov theorem 
can be restated in terms of differential inclusions, of course. But the conditions of apphcabwty 
are different than the conditions usually found in that context, and in particular they may 
not be satisfied in many examples of interest, including many nonsmooth-control problems. It 
is quite likely that the results will indeed generalize, but mathematically the proofs are quite 

delicate and need considerable work. 

Characterizations of ISS 

One of the main applications of our converse Lyapunov theorem was in obtaining complete 
characterizations of the ISS property. In the paper [10], we were able to show that the ISS 
property is in fact equivalent to the existence of a «nonlinear stability margin. _ By this we 
mean a IC^ function p with the property that for each (possibly nonlinear and time varying) 
feedback law bounded by p (|*(U)I < Ml)), the closed-loop system x = f(x,k(t,x)) is 
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globally asymptotically stable, with bounds uniform on k. Note that this is not a notion of 
local stability with respect to "small" perturbations. It is a global notion, and perturbations 
can be arbitrarily large (since the function p is in class /Coo). In some sense, this is analogous to 
exponential stability for linear systems, where a perturbation of the spectrum preserves global 
asymptotic stability. We also proved, solving an important and longstanding open problem, 
that ISS stability is equivalent to the existence of an ISS-Lyapunov function. 

Classical Operator-Theoretic Notions 

The notion of ISS was introduced in order to model i/o stability. Of course, ideally one would 
like to be able to obtain much stronger conditions. For instance, if the inputs are assumed to be 
integrable. one may ask that the input/state operator define a map into the space of integrable 
functions (of time) with values in 1R". Moreover, one may want this map to be bounded or to 
satisfy other typical functional-analytic properties. If such stronger properties hold, one then 
can study stability problems by means of Banach space or (for instance for square m egrable 
controls) Hilbert space techniques. Classical approaches (Willems, Desoer, Vidyasagar) indeed 
proceed in this fashion. More recent work such as that represented by Georgiou and Smith, then 
allows the application of powerful geometric notions (gap metric and so forth) to understand 
robustness questions. Related to this is also the so-called "nonlinear H°°» work on minimizing 

L% norms of feedback interconnections. 
In general, as mentioned earlier, it appears that it is not possible to strengthen the ISS 

conclusions of theorems such as the one on feedback equivalence to attain bounded operator 
norms However, in one particular but still very important case, a special class of linear systems 
subject to actuator saturation, we were able to solve this problem, in recent work with Liu and 
Chitour; see [23] for preliminary results and [12] for the final version. We showed there how 
to obtain stability with respect to measurement and actuator noise, for the class of systems 
(P)x = Ax + Bs(u),y = Cx having the pair (A,B) controllable, A neutrally stable, and 
(A C) observable, where s is a saturation type of nonlinearity. Specifically, we provided a 
linear controller C so that the operator (uuu2) ~ (yi,y2) defined by the standard systems 
interconnection (see Figure) is well-posed and finite-gain stable (with respect to any Lp norm, 
1 < p < oo). Our work relates to, but is essentially independent of, other papers on computing 

Ul .a P 2/i 

i > 

c 
V2 

*     i« u     u2 

Figure 1: Standard Closed-Loop 

norms for nonlinear systems in state space form, as done by van der Schaft, Isidori, Helton, 
and others. The proof relies upon techniques from dissipative systems theory, but the storage 
functions that we need to use are apparently completely new (in fact, they are not even smooth 
contrary to usual energy functions). Motivated by our results, Saberi, Lin, and Teel have just 
obtained related ones for "semi-global" stability for the same class of systems. Among many 
problems suggested by this work, one of the most natural ones mathematically is the study of 
other properties (Lipschitz continuity, differentiability) for the operators in question. A fairly 
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complete understanding of these aspects was achieved towards the end of the grant period, in 

[30]-[l3]. 

Appendix: Definition of ISS 

Recall that a function 7 : K>o — R>o is: a IC-function if it is continuous, strictly increasing 
and 7(0) = 0; a tC^-function if it is a /C-function and also 7(a) -+00 as s - 00; a positive 
definite function if 7(*) > 0 for all 5 > 0, and 7(0) = 0. A function ß: H>o x Ht>o —* H>o 
is a KC-function if: for each fixed t > 0 the function /?(■, t) is a /C-function, and for each fixed 

5 > 0 it is decreasing to zero as t -* 00. 

We deal with nonlinear systems 
i = /(«, u) (4) 

where / : Rn x Etm —* Et" is continuously differentiable and satisfies /(0, 0) = 0. Controls 
or inputs are measurable locally essentially bounded functions u : R>0 — B."1. The set of all 
such functions, endowed with the (essential) supremum norm ||tt|| = sup{|«(0M £0} < 00, is 
denoted by L™. (Everywhere, |-| denotes the usual Euclidian norm.) For each £ G B. and each 
u € I£, we denote by x(t, £, u) the trajectory of the system (4) with initial state x(0) = £ and 
the input u. This is defined on some maximal interval [0, T^yU), with Ti>u < +00. 

The following definition is intended as a nonlinear generalization of the bound |i(t)| < 
|£| e-at + c||u|| which hoids for linear systems x = Ax + Bu when the matrix A is asymptotically 

stable. 

Definition 2.1 The system (4) is (globally) input/state stable (ISS) if there exist a ££-fanction 
/3 : E>o x Ht>o — 1R, and a ^-function 7, such that, for each input u e L% and each £ € JK. , 

it holds that ... 
|*(t,£,t0l < 0(KM) + 7(IMI) (5) 

D 
for each t > 0. 

When there is no control, that is, we are considering an estimate \x(t,t,u)\ < ß(\£\,t), this 
is exactly the same as the classical Lyapunov global asymptotic stability notion (it is not a 

difficult exercise to show the equivalence). 
The next definition states that there is a proper (that is, what is sometimes called radially 

unbounded) positive definite function V on states with the property that its derivative V along 
trajectories is negative definite for large enough x, given any control magmtude. 

Definition 2.2 A smooth function V : lRn — R>o is called an ISS-Lyapunov function for 
system (4) if there exist JC^-functions aua2, and /C-functions a3 and X, such that 

Oidfl) < V(0 < a2(|£|) (6) 

for any f € E.n and , 
vv(0-/(f,/*)<-«3(lfl) W 

for any ^6E" and any /x 6 ]Rm so that |f| > x(M)- ° 
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Observe that if V is an ISS-Lyapunov function for (4), then V is a Lyapunov function, in 
the usual sense, for the autonomous system x = /(*, 0) obtained when no controls are applied. 

Given a closed invariant set A, that is, a closed subset A of R" with the property that 
trajefctories for u = 0 cannot exit this set (for instance, {A} = 0 when /(0,0) = 0), one can 
define both of the above concepts, ISS and ISS-Lyapunov function, in an entirely analogous 
manner, simply using distance to the set instead of norms. This is done for instance in [20], 

and we omit details here. 

3    Control-Lyapunov Functions 

As mentioned in the introductory section, a widespread, but typically ad-hoc, technique in 
nonlinear control (as well as in related areas) relies on the use of "energy" functions that can be 
made to decrease pointwise by means of instantaneous controls. Somewhat more technically, one 
assumes given a positive definite and proper (=radially unbounded) scalar continuous function 
V of states, with the property that V can be made to decrease infinitesimally by appropriate 
choice of controls. Then the control applied at each instant is one that forces this decrease. 
Of course, stated in this informal manner there are all kinds of technical complications -one 
needs a careful definition of "infinitesimal decrease" and it is not clear that a reasonably regular 
control selection should exist. But the paradigm is extremely powerful, and eddies notonly 
feedback control design but also the optimal control approach of Bellman and even artificial 
intelligence" techniques (position evaluations in games, "critics" in learning programs). Such 
functions V are genericaUy called control-Lyapunov functions, in analogy to the Lyapunov 
functions classical in dynamical systems (when no control is present). 

One way to make the above procedure effective computationally is if the function V is 
differentiable. In that case, the condition of infinitesimal decrease can be expressed simply 
as the requirement (the "elf property") that for each nonzero x there be some control value 
t. € Rm so that VY(I)/(I,U) < 0. (This is if the objective is state-feedback stabilization 
to the origin; an alternative is to ask that this expression be uniformly negative away from a 
desired set A, for stabilization to A, or for instance that the control should depend on a fixed 
measurement function of x, for output feedback questions. To avoid complicating the exposition, 
we continue this discussion with stabilization to the origin.) In the early 1980s, Artstem and the 
PI produced independent and mathematically complementary theoretical justifications of this 
technique (the former work assumed more regularity; the latter required less smoothness but 
applied more generally). In 1989 the PI gave a systematic methodology for the use of smooth 
control-Lyapunov functions, resulting in "universal formulas" reviewed briefly below. 

Universal Formulas 

This work is especially easy to understand in the particular case of system affine in controls, 
those as in Equation (3). For simplicity, we assume that there is just a scalar control (m - 1), 
so G(x) = g(x) is just a column vector. For such a system, the elf property is trivially shown 

to be equivalent to: ,a, 
b(x) ? 0 => a(x) < 0 W 

where we are denoting the Lie derivatives as a(x) := VV(x)./o(«), b(x) := VV(x).g(x) On 
the other hand, giving a feedback law u = k(x) for the original system, with the property that 
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the same V is a Lyapunov function for the obtained closed-loop system x = f0(x) + k(x)g(x) 

is equivalent to asking that W(x). (/o(x) + k(x)g(x)) < 0, that is, 

a(x) + k(x)b(x) < 0 

for all nonzero x.  Thus finding a suitable feedback law reduces to a problem of finding con- 
tinuous selections. The late-1980s work by the PI wasbased on the following observation: the 
condition (8) is equivalent to the statement that the pair (a(x),6(x)) is stabihzMe seen as a 
one-dimensional parametric family of systems. And the condition on *(*) is that seen as a 1 x 1 
matrix, it must be a constant linear feedback stabilizer for (a(x), b(x)), for each fixed *  Solving 
a Riccati equation for a simple linear-quadratic problem shows that the following feedback law: 
fc •= -(a + v^TFj/6 (with k(x) := 0 when 6(x) = 0) works. This is in fact analytic, even al- 
gebraic, on a, b. (The apparent singularity due to division by b is removable.) Along trajectories 
of the corresponding closed-loop system, one has that dV/dt = -v^ + F < 0 as desired. Tins 
feedback law may fail to be continuous at zero, but under a natural «small control property 
one can obtain continuity at the origin as well.  Since the existence of a elf is also necessary 
whenever there is any continuous feedback stabilizer (this is an immediate consequence of he 
classical Lyapunov converse theorems), one has a necessary and sufficient condition for the 
existance of such feedback, together with an explicit fomula for feedback controls once that a 
elf is found. The formula shown above is an example of what we mean by a   umveral formula 
in the context of elf's, meaning in general an analytic function of Lie derivatives which, when 
substituting a elf, provides a global stabilizer (there is also an extra technical requirement to 
guarantee continuity at the origin, which we omit in this overview; the references should be 

consulted for details). 
Since elf's are as a general rule easier to obtain than the feedback laws themselves -after 

all, in order to prove that a given feedback law stabilizes, one typically has to exhibit a suitable 
Lyapunov function anyway- these techniques provide in principle a very powerful approach to 
nonlinear stabilization. In any case, the availability of universal formulas aUows the seafch to 
be confined to just one scalar function, and could be the basis of numerical aPP™^ **» 
had been observed before by the PI, but never implemented. A paper at the 1993 CDC by 
Long and Bayoumi provided one such experimental approach, using the formulas as a basis oi 

a numerical technique. 
Another important direction is in extending universal formulas to the case where the control 

value set is constrained. In work with his graduate Lin, the PI found formulas for bounded 
controls (see [3]) as well as nonnegative scalar controls ([15]). 

Non-Smooth Cases 

In an early (1983) paper, the PI had shown that asymptotic controllability -which is the 
minimal possible condition for stabilizability- is sufficient to insure the existence of a con- 
trol Lyapunov function V which is C° but not necessarily smooth; in the definition, deriva- 
tives of V are replaced by Dini derivatives. Though this is an extremely general result, Dim 
derivatives do not lend themselves to explicit checking of the elf property. In work recently 
began with Lafferriere (see the preliminary paper [25]), we revisited this general result from 
two different points of view. First of all, we observed that by generahzmg the elf cond^ 

tion W0)(3u)[W(z)/(s,U)<0r to "(Vx#0)(3U)(Vp € ™)bf^)^**£ 
D'V(x) is the subdifferential of V at x, the same existence result holds. The proof is fairly 
straightforward, since the function V was obtained in the 1983 Pi's paper from an optimal 



4   NUMERICAL METHODS FOR STEERING NONLINEAR SYSTEMS 14 

control problem, and via a standard calculation it follows that then V must be a viscosity 
supersolution of the associated Hamilton-Jacobi-Bellman equation, from which the elf property 
Mows. Unfortunately, this result is less interesting than it may appear at first sight, since 
there is no guarantee than V be Lipschitz, and in particular the subdifferential could be empty, 

and work in this area is still in progress. 
A second, and from an immediate applied point of view more interesting, aspect aspect 

of our current work with Lafferriere is the study of elf's V which are piecewise smooth. This 
fits very nicely with work of Canudas and others in practical control problems (in particular 
in robotics) as well as work such as that recently reported by Helton on piecewise quadratic 
cost functions. For these V, obtained by "pasting together" smooth ones, the verification of 
the Lyapunov property can be carried out using gradients, just as in the smooth case. The 
main contribution of [25] is to give conditions under which the same universal formula given 
earlier produces for such a V a piecewise continuous globally stabilizing feedback law. (In our 
case the feedback turns out to be continuous at the origin and smooth everywhere except on 
a hypersurface of codimension 1.) In particular, a classical example due to Artstem for which 
it is known that no differentiable elf (and no continuous feedback) exists is treated explicitly 
and a control law is derived for it automatically from the universal formula rather than m an 

ad-hoc manner. 

4    Numerical Methods for Steering Nonlinear Systems 

This part of the report deals with the problem of numerically finding controls that achieve (at 
least approximately) a desired state transfer. That is, for any given initial and target states ft 
and £F in Htn, one wishes to find a time T > 0 and a control u defined on the interval [0,T], so 

that u steers ft sufficiently close to £p, f°r the system (1). 
In particular, it is of interest to consider the case of systems without drift, that is, systems for 

which the right-hand side is linear (not affine) in u, so the equations take the form x = G(x)u. 
For such systems it is relatively straightforward to decide controllability, since it is equiva- 
lent to the standard Lie algebra rank condition, but the design of explicit control strategies 
has attracted considerable attention lately. Problems of steering systems without drift are in 
part motivated by the study of nonholonomic mechanical systems. Many sophisticated control 
strategies have been proposed, based on a nontrivial analysis of the structure of the Lie algebra 
of vector fields generated by the columns of G by many authors. The approach presented in the 
Pi's paper [22] was of an entirely different nature; it is essentially a simple-minded algorithm, 
in the style of classical numerical methods as in Bryson and Ho's classical book and m its 
simplest form requires almost no effort to implement in a high-level language. Mathematically 
the main contribution of the Pi's work in this area was is in the formulation of the so-called 
"generic nonsingular loop" approach and the justification of the algorithm. The latter rehes 
on a new result proving the existence (and genericity) of such loops with good controllability 
properties. This approach was motivated to a great extent by related work on time varying 
feedback laws by the French school during the past two years, especially Coron there and m 
[22]. The journal version of [22] has recently been accepted for the IEEE Transactions ([14]) 

and contains a worked-out numerical example. 
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The Basic Idea 

Assume that / is continuously differentiate (later we wiU need to assume analyticity). Given 
a state ft G &" and a measurable and locally essentially bounded control u : [0,r] - 1R so 
that the solution x : [0,T] - Etn of the equation (3) with this control and the initial condition 
x(0) = ft is defined on the entire interval [0,T], the state x(t) at time t € [0,T] is denoted 
by <j>(t ft,u). As discussed above, the objective, for any given initial and target states ft and 
fF in JR." is to find a time T > 0 and a control u defined on the interval [0,T], so that u 
steers ft to fr, that is, so that cj>(T,^u) = fr, at least in an approximate sense After 
a change of coordinates, one may assume without loss of generality that £F = 0. Classical 
numerical techniques for this problem are based on variations of steepest descent. This is all 
very elementary, but we need to recall it for further reference. The basic idea is to start with 
a guess of a control, say ¥ : [0,T] - Etm, and to improve iteratively on this initial guess. More 
precisely, let x = <£(•, ft, ü). If the obtained final state x(T) is already zero, or is sufficiently near 
zero, the problem has been solved. Otherwise, we look for a perturbation Au so that the new 
control ¥+ A¥ brings us closer to our goal of steering ft to the origin. The various techniques 
differ on the choice of the perturbation; in particular, two possibilities are found most often. 

The first one is basically Newton's method, and proceeds as Mows. Denote, for any fixed 
initial state ft, a(u) := #r,&,«) thought of as a partially defined map from ££(0,T) into 
E» This is a continuously differentiate map, Theorem 1), so expanding to first order there 
results a(¥ + v) = a(¥) + a.[¥](v) + o(v) for any other control v uniformly near it ("*" as a 
subscript denotes differential). If we can now pick v so that 

a,[¥](v) = -a(¥) (9) 

then for small enough h > 0 real, 

a(¥ + At;) = (1 - h)a(u) + o(h) (10) 

will be smaller than the state a(¥) reached with the initial guess control ¥. In other words, the 
choice of perturbation is A¥ := hv, 0 < h< 1. It remains to solve equation (9) for v. The 
operator L : v ~ a.[u\(v) is the one corresponding to the solution of the vanational equation 
(linearization along trajectory) z = A(t)z + B(t)v,z(0) = 0, where A(t) := gf(x(t),<0) and 

ß(f) := f£(äf(*),¥(t)) for each t, that is, Lv = £ $(T,S)B(s)v(s)ds , where $ denotes the 

fundamental solution associated to X = A(t)X. The operator L maps ££(0,T) into IT, and 
it is onto when the linearization is a controllable linear system on the interval [0,T], that is, 
when ¥ is a control nonsingular for ft relative to the system (3). In other words, ontoness 
of L = a.[¥] is equivalent to first-order controllability of the original nonlinear system along 
the trajectory corresponding to the initial state ft and the control u. The main point of our 
technique lies in showing that it is not difficult to generate useful nonsingular controls, at least 

for systems with no drift. 
Assuming nonsingularity, there exist then many solutions to (9). Because of its use in (10) 

where a small v is desirable, and in any case because it is the most natural choice, it is reasonable 
to pick the least squares solution, that is, the unique solution of minimum norm, v :- -L a{u) 
where L* denotes the pseudoinverse. The technique sketched above is well-known in numerical 
control For instance, the derivation in pages 222-223 of Bryson and Ho's book, when applied 
to solving the optimal control problem having the trivial cost criterion J(u) = 0 and subject to 
the final state constraints x = ip(x) = 0, results in this formula. 
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Alternatively, instead of solving (9) for *, one might use the steepest descent choice t> := 
-L*a(H) where L' is the adjoint of L. This formula also results from the above-cited derivation, 
now when applied using the quadratic cost J(u) = ||a(U)||2 but relaxing the terminal constraints 
U = 0). Now a(ü+hv) = (I-hLL*)*(ü) + o(h), where / is the identity operator If again Z is 
onto, that is, if the control Ü is nonsingular for &, then the symmetric operator LL is positive 
definite so 0 < h< 1 will give a contraction as earlier. (An advantage of using L instead 
of L* is that no matrix inversion is required. On the other hand, one may expect Newton s 
method to behave better locally and steepest descent to be more effective globally.) 

Of course, in general there are many reasons for which the above classical techniques may 
fail to be useful in a given application: the initial guess Ü may be singular for &, the iteration 
may fail to converge, and so forth.   The main point of the Pi's recent work was to show 
that, for a suitable class of systems, a procedure along the above lines can be guaranteed to 
work.  More specifically, we showed that for analytic systems without drift there are always 
controls Ü with the property that they lead to "nonsingular loops" in the sense that: (1) u 
is nonsingular for every state x, and (2) <j>(T,x,ü) = x for all x.   The result is even more 
general- for all analytic systems that have the strong Lie accesibility property (no assumption 
that the system has no drift), there exist controls that are nonsingular for all states. Even more 
interestingly, generic controls (in the standard C~ topology sense) have this property   From 
here, one obtains the result for systems without drift: starting from such a control Wf defined 
on an interval [O.T/2],one may now consider the control Ü'on [0,T] ^ equals " ™J [MV2] 
and is then followed by the antisymmetric extension: u(t) = -u(T - t)t G {1 /J,i ]. inis u 
provides nonsingular loops. (The proof of the existence and genericity of nonsingular controls 
proceeds by first establishing the existence of nonsingular controls pointwise - a topological 
fixed point theorem is needed here- and then by dualizing Sussmann's universal input theorem 
for observability, which provides the required transversality result.) In [22] we also provide a 
convergence theorem that shows that, assuming Ü is picked as above, repeated application of 
the Newton or gradient algorithm starting from any fixed ball is guaranteed to get us within 
any desired epsdon-distance of the target state, for all small enough stepsizes h; a rate of 

convergence estiate is provided as well. 
It is possible to combine the nonsingular loop technique with line searches over the scalar 

parameter h or, even more efficiently in practice, with conjugate gradient. Line search corre- 
sponds to leaving * fixed and optimizing on the step size h, only recomputing a variation t; when 
no further improvement on h can be found. (The control applied at this stage is then the one 
for the "best" stepsize, not the intermediate ones calculated during the search.) The planning 
of motions with workspace obstacles is another interesting and important area. We proposed 
paper a method that allows including obstacles, essentially by multiplying the equations by 
a function which vanishes at the sets that are dissallowed for trajectories (this is somewhat 

related to the "potential" method in path planning). 

5    Other Topics 

In this section three other areas are discussed that represent recent work by the PI supported 

by this grant. 
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Discrete-Time Systems 

Another thread of the Pi's work focuses on controllability properties of discrete-time nonlinear 
systems. These are described by controlled difference equations of the Mowing general form: 

x(t+l) = f(x(t),u(t)),   t = 0,1,2,.... (H) 

The sequences x and u take values in manifolds. Observe that both variables, the control u 
and the state x, take continuous values, which distinguishes this study from classical automata 
theory. In contrast to the linear case, where discrete and continuous-time systems are treated 
side by side, much of the literature regarding nonlinear systems has classically restricted itself 
to the analysis of the latter, namely, to the consideration of systems (1). With the exception of 
ad-hoc studies for special classes of systems, seldom are nontrivial results provided for discrete- 
time models, in spite of the fact that the latter arise very naturally in several contexts. This 
lack of study can be ascribed mostly to the lack of powerful geometric tools of analysis, when 
compared with the highly successful use of such techniques in the context of continuous-time 

problems. 
One of the main sources of discrete-time questions in applications arises from time sampling 

in digital control. This is analogous to the consideration of "time 1 maps" in the study of 
uncontrolled differential equations. As far as a control algorithm is concerned, the physical 
system is a discrete-time system described by an equation of the type (11), where now /(*,«) 
is the solution of the differential equation (1) at the end of the sampling interval assuming that 
the initial state was x and the control was held constantly equal to ti. (There are of course 
variations of the basic sampling idea: A/D conversion involves also quantization, constant 
controls values may be smoothed out by a filter before being applied, multi-rate strategies 
are popular; but even without these complications, the study of discrete-time control systems 
appears naturally.) Another area in which results from discrete-time nonlinear control theory 
are of importance is in the study of Markovian systems (11) where the variables u(t) are random, 
and together with the transitions / they characterize the probabilistic behavior of the process 
*(•). Reachability properties play a central role in establishing the existence and smoothness 

properties of equilibrium distributions, as in 
In late-1980s work with Jakubczyk, and in other work together with various collaborators, 

most especially with his student Albertini, the PI Mowed an approach, based on the introduc- 
tion of certain Lie algebras of vector fields, which permits obtaining results for discrete time 
which closely parallel some of those results known in the differential equation case. Roughly 
the necessary vector fields are obtained by considering the infinitesimal effect of iterations ol 
the mappings /(•, u). Formally, if instead of these iterates based on control sequences one would 
instead be considering actions of a Lie group G on a manifold, our vector fields would be the 
standard infinitesimal generators associated to the elements in the Lie algebra of G. Armed 
with these tools, the PI and coworkers obtained new results on controllability properties. 

For a system (1) or (11), the reachable set or forward-accessible set from a state x° € X 
consists of those states to which one may steer x° using arbitrary -measurable essentially 
bounded in the continuous-time case- controls. The orbit or forward-backward accessible set 
from x° is defined as the set consisting of all states to which x° can be steered using both 
motions of the system as well as negative time motions. Negative time motions are in general 
not physically realizable, but the orbit is an extremely useful object to study, as it is always 
a submanifold of X whose dimension can be obtained from Lie-algebraac computations, and 
group-theoretic techniques are relevant.   In contrast, the reachable set is not in general a 
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manifold, though one may define a "dimension" for it in various natural and equivalent ways, 
for instance meaning the largest dimension of a submanifold that it includes. 

Controllability questions for continuous-time systems have been the subject of much re- 
search. In continuous-time, a fundamental fact in controllability studies is what may be called 
the Chow-Krener (*) property: The dimension of the orbit from each x° € X equals the dimen- 
sion of the reachable set from x°. (The property holds as stated for analytic systems; in the 
more general smooth case one would need an additional Lie-algebraic assumption.) That is, 
the reachable set contains a submanifold of the state space and it is in turn contained m a sub- 
manifold of the same dimension, and this dimension can be computed from the rank of certain 
matrices formed by taking iterated Jacobians of the vector fields defining the system, evaluated 
at the state x°. These Lie-theoretic characterizations are "direct" in that they do not involve 
integration of the differential equation, and they are closely related to more classical geometric 
material related to Frobenious' theorem. Perhaps the most important difference between (11) 
and (1) is that the (*) property fails for the former, even for systems obtained through the 

sampling of one-dimensional analytic systems. 
The Pi's work with Jakubczyk dealt with systems (11) that are time-reversible or invertible, 

that is, the maps /(■,u) are diffeomorphisms. (This is satisfied for systems that arise from the 
sampling of complete continuous-time systems.) For such systems, the paper derived several 
characterizations of accessibUity and studied the geometric structure of accessible sets, and as 
a consequence a theorem was proved showing that the (*) property does hold provided that the 

state x° be an equilibrium state (/(x°,0) = x ). 
Much further progress has now been achieved in work with Albertini; see [5],[6] and several 

conference papers published recently. Among results in this very recent work are the extension 
of the (*) property to many cases. For example, (*) holds for each state x° that satisfies a 
positive Poisson stability condition. (An equilibrium point satisfies this requirement so the 
previously-known result is generalized.) It was also possible to prove that (*) does hold if the 
orbit from x° is compact. Moreover, it was shown that transitivity implies forward accessibUity 
when there exists a transitive state x which is also a global attractor for the given system (i.e. 
x € clos (R(x)) for each state x). Another interesting result was the proof that the set of points 
for which property (*) does not hold is very thin. In fact, it was established that if there is 
only one orbit (the system is transitive), then forward accessibility holds from an open dense 
set of states, assuming the state space to have at most finitely many connected components. 

To prove these new results, one must associate to (11) various new Lie algebras of vector 
fields whose orbits are correlated to the geometry of the sets R(x) and 0(x), providing new Lie- 
theoretic characterizations of the transitivity and the forward accessibility properties. This work 
also generalized several results to a larger class of systems, where the invertibility assumption 
was relaxed in various ways. More precisely, it dealt with partially defined dynamics, systems 
for which the functions {/(•,«)} are diffeomorphisms but possibly defined only on some open 
subsets of the state space, and also covered was the "submersive" case, systems for which the 
Jacobian of the function /(•,«) has full rank at each point. Unfortunately, for both classes 
many of the interesting results that hold in the invertible case do not longer hold; however, 
one can still give some theoretic characterizations of transitivity and forward accessibility. Also 
given were several examples showing the pathological behavior that can arise in these cases, 
and the main differences with the invertible case were described. 

Another aspect of the Pi's and Albertini's work dealt with connections between controllabil- 
ity of a given system and properties of an associated classical (uncontrolled) dynamical system. 
Recently, Colonius and Kliemann introduced the notion of controllability subsets of the state 
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space of continuous-time systems. These are essentially sets where "almost reachability" holds 
Controllability sets have proved to be an extremely useful concept; in particular, Colonius and 
Kliemann have established an interesting relationship between such sets and chaotic behavior 
in subsets of an associated dynamical system. This work obtained analogs of these results in 
the discrete-time setting. This extension is not trivial, as it depends critically on the deep un- 
derstanding of the forward accessibility properties of controllability sets, in fact the basic idea 
which underlies most of the results is the validity of property (*) for continuous-time models. 

Identification Questions 

The question of dynamical systems identification from input/output data is at the core of 
control theory, mostly in 'black box' approaches, where only qualitative a priori information is 
available about the process being controlled. (In other areas, such as in the study of dimensions 
of attractors for unforced dynamical systems, analogous issues appear, but mathematically the 
availability of inputs makes this a different topic; in particular, problems of choice of controls 
-persistent excitation and related concepts- take center stage in control theory.) Since his thesis 
work in the mid 1970s, the PI has had a continuing interest in a problem which is basic m this 
context, namely, the generalizations to nonlinear systems of the correspondence that exists in 
the linear case between "autoregressive moving average" representations 

yW(t) = aiy(t) + ... + aky^Kt) + blU(t) + ... + hu^t) (12) 

(or in frequency-domain terms, rationality of transfer functions) and state-space representa- 
tions. In the linear case, such representations form the basis of much of adaptive control and 
identification theory. The obvious generalization is to look at "input output equations   of the 

tyPC E (w(t), w'(t), w"(t),..., wV(t))  = 0 (13) 

where w(-) = («(•), 2/(0) represent the i/o pairs of the system, connected by an operator F that 
maps input functions u to output functions y = F[u]. (If an initial state is not fixed, one has a 
family of such operators, one for each initial state.) In experiments, the functional relation E 
is usually estimated, for instance through least squares techniques, if a parametric general form 
is chosen, such as using polynomials of a fixed degree. A similar formalism can be developed 
for discrete-time systems, using difference equations instead; actually, the discrete-time case 
had been already developed by the PI as part of his thesis work, and it has been cited as a 
justification of identification algorithms by several other authors. 

In work with his former graduate student Wang, the PI has extended to continuous-time 
the results obtained earlier by the PI for the discrete case; see especially [1]. This work, closely 
related and complementing studies by Crouch, Glad, Van der Schaft, and others, succeeded in 
showing that, if one knows that the data is generated by a «well-posed» operatorF'then^ the e 
is an algebraic i/o equation (i.e., all pairs (u,F[u)) satisfy (13)) if and only ./it F realizable 
by a (singular) state space polynomial system (Precise definitions are given in the above-given 
references ) By "weU-posedness" it is meant that F is a Fliess operator, i.e. one described 
by a convergent generating series. The i/o operators induced by convergent generating series 
form a very general class of causal operators, capable of representing a variety of nonlinear 
systems. In [2], the algebraic results are supplemented by a result linking analytic i/o equations 
to local internal readability. To do this, one first constructs a "meromorpmc" realization by 
studying the properties of meromorphically finitely generated field extensions, and then imposes 
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similar properties on the observation fields already introduced in the former paper^ Finally 
by a perturbation approach, together with the Fliess Lie rank conditionfor ^zabdity one 
concludes that around' each point there is local analytic realization. That paper «mbmestfce 
techniques from differential algebra used in the polynomial case with techniques from differential 

geometry (Lie rank finiteness). 
Central to this work is the analysis of observation spaces. One of the critical technical^results 

used relates two different definitions of this space, one in terms of smooth controls and another 
Tterms of piecewise constant ones. The first definition immediately rektes to i/o equations 
whSThe oLr is related to readability; these two definitions were shown to -made ma 
1989 paper with Wang.  The papers [17] and [21] started the study of integral as, opposed 
to ^fferen ia! algebrai! equations   For linear systems, it is standard to prefilter data, which 
founts precisely to using with less-noise-sensitive integral equations. For nonlinear^systems 
similar motivations were proposed by A.E. Pearson. In the linear case, different*! equaion 
are always equivalent to integral ones, but it was shown in the above papers that this s no 
Lessarüy the case in general; several relationships between the two types of i^"*" 
are provided.   Another area deals with non-polynomial (and non-rational) reahzabmty.   In 
the textbook by Nijmeijer and van der Schaft it was shown that  under strict instant rank 
conditions, the outputs of a smooth state space system can be described by an equation of 
tvpe (13) or which E is a smooth function. In the polynomial case, these conditions are not 
n^led  and the converse holds too.  In the analytic case, if there is an equation then there 
fsaRealization  but in principle the converse does not hold (unless there are nonsingulanty 
on^tnsrThaUs, the're are'analytic systems and initial states for which the correspond 
/o op rators satisfy no possible analytic equation. It is possible that there are partid~ 

to the above results, however.   One possibility is to consider the mapping sending ve tors 
(x «((» tz'(O)   ...ti^CO)) , consisting of states and (n - l)-jets of inputs   into n-jets of 

is analytic, and hence the image of each compact set is a finite union of embedded "bmairioMB 
fTm resuk in subanalytic set theory). This implies that for bounded states andfounded 

controls (in an appropriate Whitney topology), a finite number of local analytic equations (as 
opposed to a single global equation) are satisfied by i/o pairs. Preliminary work along these 
lines was reported in work with Wang (again see [17], [21]). 

Our latest, and most unexpected result ([27]) in this general area showed the existence of 

inputs that are sufficiently rich to permit the identification (in a P^.^^^^ 
arbitrary nonlinear systems. This result constitutes a great generalization^of the ™£* 
input theorems" developed by Isidori, Sussmann, the author, and others during the last 20 

years; a more detailed journal paper is in preparation. 

Information-based complexity ideas 

Finally on the topic of identification, we mention the work carried out in the context of 
Ltaation-based complexity In the joint paper [18]-[19], the PI and coauthors were abk 
TexTend to a nonlinear class of «fading-memory systems» the previous results known regard- 
LgTe number of inputs needed for deterministic noisy identification of classes of stable linear 

systems. 
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